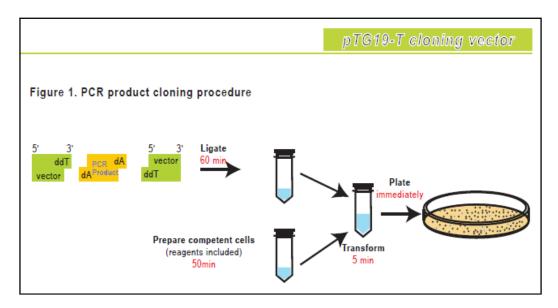


DESCRIPTION


The pTG19-T vector is designed for rapid and efficient cloning of PCR products with 3'dA overhangs. The linearized pTG19-T vector with 3'-dT overhangs prevent vector recircularization, therefore resulting in high percentage of recombinant clones and low background.

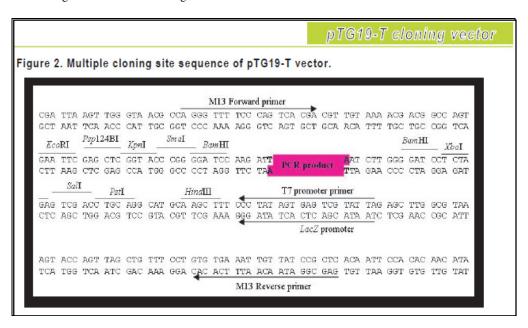
FEATURES

- Convenient ready-to-use linearized 3'dT overhang pTG19-T vector.
- Efficient more than 80% of the recombinant clones contain the target DNA.
- Rapid clone selection:
 - o lacZ gene for blue/white selection.
 - o M13 primer sites for PCR screening and sequencing.
 - o BamHI restriction enzyme can be used to release the insert from the pTG19-T vector.

QUALITY CONTROL

- More than 80% clones are white with control insert.
- More than 85% of white clones are positively by restriction endonuclease digestion.
- The 3'dT overhangs for every batch of vectors is confirmed by sequencing of five recombinant clones.

KIT COMPONENTS


Packaging	5 preps	20 preps
Catalog No.	TA010-S	TA010
-		
Components		
pTG19-T vector (25ng/µl)	10µ1	2 x 20µ1
Control insert (12.5ng/µl)	5µl	20μ1

STORAGE & STABILITY

All components are stable at -20°C for one year if properly stored. To avoid frequent freeze-thaw cycles, keeping small aliquots at -20°C is recommended.

Additional materials to be supplied by user

T4 DNA Ligase and 10X Buffer Ligase

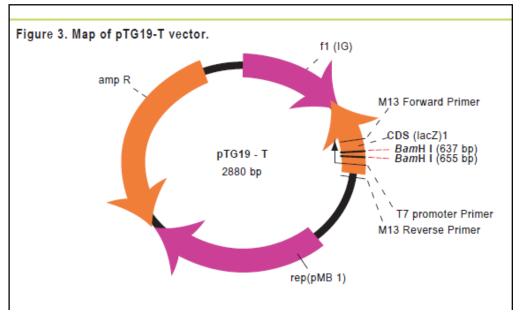


Table 1: Feature of pTG19-T vector

Features	Nucleotide Position
f1(+/-) origin of ss- DNA replication	2-457
lacZ a fragment	449-733
multiple cloning site	615-589
lac promoter	691-710
pMB1 origin of replication	1116-1730
ampicillin resistance ORF	1890-2750
T7 promoter primer binding site	692-710
M13 Forward primer binding site	575-592
M13 Reverse primer binding site	745-765

PROTOCOL

PCR Product Consideration

- We recommend using Taq DNA Polymerase in the PCR reaction. Remember that your PCR product needs to have single 3'-dA overhangs.
- A 5µl of PCR product should be analyzed on an agarose gel before using it in the ligation reaction. If the PCR product is clean (a homogenous band of desired size), it can be directly used in the ligation reaction.
- If multiple bands are observed on the agarose gel, perform gel purification to obtain the desired band for ligation reaction.
- If the template used in the PCR reaction contains the β-lactamase (ampicillin resistance) gene, perform gel purification of the PCR band to reduce the number of background colonies.

Ligation

1. Calculate the amount of insert for ligation based on the example below:

Example:

For 500bp insert with 50ng of pTG19-T vector (2880bp)

$$\frac{2880\text{bp}}{500\text{bp}} = 5.76$$
(vector is 5.76x larger than insert, you need 5.76x less insert)

For 50ng pTG19-T vector,
$$\frac{50\text{ng}}{5.76}$$
= 8.68ng of insert for 1:1 ratio
= 8.68ng x 3
= 26.04ng of insert for 1:3 ratio

Table 2: Conversion table for amount of PCR product required per ligation reaction

1 1 5		
Size of PCR product (bp)	Amount needed for 1:3 vector and insert molar ratio	
100	5.21ng	
300	15.63ng	
500	26.04ng	
1000	52.08ng	
1500	78.13ng	
2000	104.17ng	
3000	156.25ng	

2. Add the following in a 0.2ml microcentrifuge tube:

pTG19-T vector (25ng/µl)	2μ1
Fresh PCR product	μl*
10X Buffer Ligase	1 μ1
T4 DNA Ligase (200u/μ1**)	1 μ1
Nuclease-free water	to 10 μ1
Total Volume	10 μ1

^{*}Recommended molar ratio for vector and insert is 1:3. In general 1:5 to 3:1 of vector and insert ratio will produce good results. Please refer to step 1 or table 1 for calculation and amount needed.

^{**}The unit is in Cohesive End Ligation Unit. One Cohesive End Ligation Unit is equal to 0.015 Weiss units.

3. Incubate at 22° C for 1 hour. For maximum yield of ligation products, incubate the mixture at 16° C overnight.

Note: A control ligation reaction can be performed using 2µl of Control insert (12.5ng/µl)

Choosing suitable E.coli strains for competent cell preparation

- 1. E.coli strains should possess the following mutations which are important for transformation:
 - o *endA1* (mutation in the endonuclease I gene), this mutation increases the yield and quality of plasmids.
 - RecA1(mutation in general recombination gene), which limits the recombination of the plasmid with the E.coli genome.
 - $lacZ\Delta M15$ (partial deletion of β-galactosidase gene), for blue/white selection.
- 2. Some recommended E.coli strains for competent cell preparation are DH5 α , TOP10, TOP10F' and XL1-Blue.

TROUBLESHOOTING

Problem	Possibility	Recommended Solution
Few or no colonies	Poor quality competent cells	Test transformation efficiency using supercoiled plasmid DNA (>106 colonies per μg of supercoiled DNA is expected.
	Unsuccessful ligation	Perform PCR using Taq or polymerases which lack proofreading ability.
	The PCR product is blunt- ended	Perform a control ligation reaction using Control insert.
	The bacteria strain used did not possess <i>endA1</i> mutation	Refer to "Choosing suitable E.coli strains for competent".
White colonies do not have insert	Single 3'-dT overhangs on the vector degraded	Use another tube of vector. Avoid storing the vector for longer than one year or subjecting it to repeated freeze-thaw cycles.
Majority of colonies are blue	Incorrect molar ratio of the vector : insert used in the ligation reaction	Set up the ligation reaction with 1:1 to 1:3 vector: insert ratio.
Blue or white colonies with blue center contain insert	The insert does not interrupt the reading frame of the <i>lacZ</i> gene	Small inserts (<500bp), may appear as blue or light blue colonies. Analyze some of these colonies as they may contain insert.
Contain insert	Mixture of blue and white	Streak the colony onto a new LB/Amp plate with X-Gal and IPTG in order to obtain single colonies.
A large colony surrounded by smaller	The smaller colonies are ampicillin-sensitive	Use fresh ampicillin stock solution and LB/Amp plates.
		Do not pick the small colonies as they do not contain any plasmid.